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A B S T R A C T

Glutamate is the major excitatory neurotransmitter in the brain, with up to 40% of all synapses being

glutamatergic. An altered glutamatergic transmission could play a critical role in working memory

deficts observed in schizophrenia and could underline progressive changes such as grey matter loss

throughout the brain. The aim of the study was to investigate if gray matter volume and working

memory could be modulated by a genetic polymorphism related to glutamatergic function. Fifty

schizophrenia patients underwent magnetic resonance and working memory testing outside of the

scanner and were genotyped for rs4354668 EAAT2 polymorphism. Carriers of the G allele had lower gray

matter volumes than T/T homozygote and worse working memory performance. Poor working memory

performance was associated with gray matter reduction. Differences between the three genotypes are

more relevant among patients showing poor performance at the 2-back task. Since glutamate

abnormalities are known to be involved in excitotoxic processes, the decrease in cortical thickness

observed in schizophrenia patients could be linked to an excess of extracellular glutamate. The

differential effect of EAAT2 observed between good and poor performers suggests that the effect of

EEAT2 on gray matter might reveal in the presence of a pathological process affecting gray matter.

� 2013 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Glutamate is the major excitatory neurotransmitter in the
brain, with up to 40% of all synapses being glutamatergic [13].
Accumulation of excess extracellular glutamate and subsequent
overstimulation of glutamatergic receptors increases the produc-
tion of reactive and excitotoxic oxygen/nitrogen species, which
induce oxidative stress leading to neuronal death [22]. Dysfunction
of the finely tuned system of glutamatergic signalling has been
proposed as a major mechanism in the schizophrenia pathogenesis
[14,27,29] and several neurochemical, neurodevelopmental and
genetic data corroborate this view [11,24,33].

Many of the genes recently associated with an increased risk for
schizophrenia can influence the function of modulatory sites on
the NMDA receptor or intracellular-receptor interacting proteins
that link glutamate receptors to signal transduction pathways
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[18,35]. Exposure to NMDAr, glutamate and glycine antagonists,
such as phencyclidine or ketamine, induces negative symptoms
and cognitive dysfunction similar to that of schizophrenia [23,44].
Blood levels of antibodies against NMDAr in patients with systemic
autoimmune disease were associated with impairment of parti-
cular cerebral functions, namely learning and memory deficits,
depressed mood, and others neuropsychiatric disturbances [39].
Data suggest that an altered glutamatergic transmission could play
a critical role in the working memory deficits observed in
schizophrenia and its levels are dysregulated in DLPFC [5]. The
PFC is an essential component of a neural circuit for working
memory [2,16], impaired in schizophrenia patients and their
relatives [15,45,46]. Finally it has been suggested that glutamate
dysfunction could underline the progressive changes such as grey
matter loss throughout the brain found by structural neuroimaging
studies [38].

The inactivation of glutamate is handled by a series of
molecular glutamate transporter (EAATs) which are membrane-
bound pumps that closely resemble ion channels. These
transporters play the important role of regulating concentrations
of glutamate in the extracellular space, maintaining it at low
physiological levels that promote biological function without
promoting toxicity [9]. Five human excitatory amino acid
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transporters have been cloned, among them, EAAT2 is respon-
sible for up 95% of extracellular glutamate clearance [41].
Impaired glutamate uptake by dysfunction or reduced expression
of EAAT2 has been implicated in the pathogenesis of various
diseases like multiple sclerosis and Alzheimer disease
[8,28,31,40].

The human EAAT2 gene is located on 11p13-12 [34]. Mallolas
et al. [30,34] have found an T-to-G polymorphism at –181 bp from
the transcription start site of the EAAT2 gene. The mutant genotype
abolishes a putative regulatory site for activator protein-2 and
creates a new binding site for the transcription repressor factor GC-
binding factor 2, resulting in less transporter expression and with
the G allele inducing a 30% reduction in promoter activity
compared with the T allele. Changes in EAAT2 expression in
schizophrenia brains may be an important contributor to
glutamate dysfunction [25,32,42]. Decreased expression of EAAT2
[36] and less glycosylation of EAAT2 which might reflect decreased
glutamate reuptake, have been observed in DLPFC of schizophrenia
patients [4]. Significant increases of mRNA expression of EAAT1
and EAAT2 have been reported in the thalamus of schizophrenics
[43] while a significant decrease of EAAT2 mRNA expression was
observed in the parahippocampal gyrus [37], thus confirming that
abnormal homeostatic regulation of glutamate synaptic levels
could be associated with schizophrenia. The homologous of EAAT2
in the rat, GLT-1, plays critical roles in LTP induction, a critical
mechanism for memory functioning, through regulation of
extracellular levels of glutamate [21], thus suggesting that EAAT2
changes could play a role in mediating the relationship between
working memory deficits and gray matter abnormalities in
schizophrenia.

No study so far investigated if gray matter regional volume and
working memory could be modulated by a genetic polymorphism
related to glutamatergic function.

2. Material and methods

Fifty patients (34 males and 16 females) with chronic
schizophrenia were recruited at the psychiatric ward of San
Raffaele Turro Hospital in Milan from 2009 to 2012. Exclusion
criteria were mental retardation, lifetime clinically relevant
substance abuse including cannabis, history of major unstable
physical illness and other psychiatric co-morbidities. Patients were
biologically unrelated, clinically stabilized outpatients meeting
The Diagnostic and Statistical Manual of Mental Disorders, 4th
edition (DSM-IV) criteria for chronic schizophrenia and were
responders to typical and atypical antipsychotics in monotherapy
(clozapine n = 15, risperidone n = 13, aripiprazole n = 2, haloper-
idol n = 7, paliperidone n = 6, olanzapine n = 7). Doses had been
stable in the 3 months before enrollment. Schizophrenia diagnosis
was made by trained psychiatrists using the SCID-I questionnaire
and mental retardation was assessed by a trained psychologist
through WAIS-R. After complete description of the study to the
subjects, a written informed consent was obtained. The local
ethical committee approved the study protocol.

All patients underwent magnetic resonance and working
memory testing outside of the scanner and were genotyped for
rs4354668 EAAT2 polymorphism. Moreover, all patients were
administered the Brief Assessment of Cognition in Schizophrenia
(BACS) to evaluate global cognitive performance (for a complete
description of BACS see Anselmetti et al. [1]). For each subtest an
equivalent score has been obtained which show if the perfor-
mance is good (score of 2, 3 or 4) or if it is poor (score of 0 or 1). A
global cognitive index has been calculated as the mean
equivalent score of all subtests of the BACS. Neuropsychological
assessment (BACS and N-back) has been performed the same day
of the scan.
2.1. Working memory assessment

2.1.1. N-back task

In the N-back task as instantiated here, a number between 1 and
4 is shown randomly on a screen. For the 0-back, subjects respond
to the number currently showing on the screen by pressing the
appropriate button; for the 1-back, subjects respond to the
previous number on the screen, and so on for 2-back conditions.
Each number is shown for 160 ms, with an interval of 1640 ms
between numbers (and 3000 ms between blocks). The task
imposes a parametric load on working memory, and the version
we used is relatively demanding [7]. The primary performance
measure is accuracy (correct responses); we also measured
reaction time (RT).

2.2. Genotyping

DNA was extracted from whole blood by a manual extraction,
using the ‘‘Illustra blood genomic Prep Midi Flow kit’’ (GE
Healthcare, Milan, Italy).

To identify the polymorphism rs4354668T/G (DNA forward
strand), a standard Polymerase Chain Reaction (PCR) was carried
with the following primers: 50-GCC ACC TGT GCT TTG CTG-30 and
50-TGA TGT CAG CTC TCG ACG AA-30.

The PCR was carried out in a 10 ml volume containing 150 ng
genomic DNA, 1 ml of 1� Hot Master Taq Buffer with Mg++
(Eppendorf), 0.1 ml of each primer [50 uM], 1 ml of deaza-dNTPs
[10 mM], 0,5 ml of Dimethyl sulfoxide (DMSO) solution (Sigma-
Aldrich, Milan, Italy) and 0.1 ml of Hot Master Taq [5 U/ul]
(Eppendorf).

After an initial step of 5 min at 94 8C, 35 cycles of amplification
(35 s at 94 8C, 35 s at 58 8C, 45 s at 70 8C) and a final extension step
of 10 min at 70 8C were performed.

An aliquot of PCR product was digested using Msp I (20 U/ul)
(New England Biolabs, England, UK) and incubated at 37 8C for 8 h;
fragments were separated in agarose gels.

Depending on the presence of two or three restriction Msp I
sites, either three fragments (allele T) or four fragments (allele G)
were produced.

2.3. Brain imaging

Brain imaging volumetric T1-weighted sequences were
acquired on a 3.0 Tesla scanner (Gyroscan Intera, Philips, The
Netherlands) using a 6-channel SENSE head coil using a
T1-weighted MPRAGE sequence (TR 25.00 ms, TE 4.6 ms, field
of view = 230 mm, matrix = 256 � 256, in-plane resolution
0.9 � 0.9 mm, yielding 220 transversal slices with a thickness
of 0.8 mm). Images were analyzed using STATISTICAL PARA-
METRIC MAPPING software (SPM8, Wellcome Department
of Imaging Neuroscience, Institute of Neurology and the
National Hospital for Neurology and Neurosurgery, London, UK)
and the voxel-based morphometry (VBM) toolbox (VBM 5.1;
http://dbm.neuro.uni-jena.de/vbm/) implemented in SPM8
(http://www.fil.ion.ucl.ac.uk/spm/), which combines tissue seg-
mentation, bias correction and spatial normalization into
a unified model. We used the optimized VBM procedure,
which segments grey and white matter and normalizes GM
segmented images to a standard space by matching them to
their template [3]. The procedure yielded modulated GM
normalized images: modulated parameters were used to test
for voxel-wise differences in the relative volume of GM by
compensating for the effects of warping, to ensure that the total
amount of GM in a region is the same before and after spatial
normalization [17]. The voxel size for all images was resliced to
1 � 1 � 1 mm.

http://dbm.neuro.uni-jena.de/vbm/
http://www.fil.ion.ucl.ac.uk/spm/
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We realigned the scans to correct for head movement. Images
were then normalized to the standard EPI template volume of the
Montreal Neurological Institute (MNI) reference brain and
smoothed using a 8-mm full-width at half-maximum isotropic
Gaussian kernel because smaller smoothing kernels are appro-
priate to detect the volume reductions typical of schizophrenia in
small structures [20].

2.4. Statistical analysis

More that 25% of correct responses were considered as a good
performance at the n-back task. 2-back was chosen for the
analysis as scores were better distributed between genotype
groups. To assess the statistical significance of group differences,
data were analyzed within the context of the General Linear
Model (GLM). Based on previous literature showing that both
homozygotes and heterozygotes carriers of the mutant genotype
show greater excitotoxic damage after stroke compared to wild
type [30], we pooled together G carriers genotype. Firstly an
analysis of variance was performed to investigate interaction
between EAAT2 polymorphism and working memory; 2-back
scores and genotype were entered as factors and medication load,
duration of illness and mean cognitive performance as nuisance
covariates.

2.4.1. Voxel-based morphometry

Structural modulated images were entered into a second level
analysis of variance (ANOVA) with genotype and performance
(good and poor) as factors. This procedure allowed for the regions
where both factors significantly influenced brain volume to be
explored (conjunction analysis, as implemented in the SPM8
statistical software package), and to test the levels of significance
of the main effects of EAAT2 and of working memory performance
one by one. Moreover, we performed an interaction analysis. We
included as covariates the total intracranial volume to adjust for
global atrophy and identify regions with differences that cannot be
explained by the total GM differences, medication load, duration of
illness and mean cognitive performance as possible confounding
factors. The total intracranial volume was calculated as the sum of
Table 1
Clinical and demographic characteristics of the sample as a whole and divided accord

equivalent dosages.

2-back

Good performers n = 28

(T/T = 4; T/C = 13; C/C = 11)

Mean � SD 

Age 34.66 � 9.45 

Onset (years) 23.96 � 7.16 

Education (years) 12.04 � 2.99 

Duration of illness (years) 10.70 � 8.84 

Medication 313.26 � 205.17 

IQ 84.04 � 7.11 

No hospitalizations 4.22 � 4.43 

Total intracranial volume (ml) 1538.53 � 192.68 

Gray matter (ml) 655.66 � 103.27 

White matter (ml) 546.81 � 68.49 

Cerebrospinal fluid (ml) 336.06 � 68.69 

PANSS positive 17.29 � 6.56 

PANSS negative 19.83 � 3.72 

PANSS general 36.58 � 5.47 

PANSS total 73.71 � 11.47 

Verbal memory 45.52 � 10.63 

Working memory 16.89 � 4.43 

Psychomotor coordination 67.04 � 4.43 

Verbal fluency 37.81 � 10.63 

Selective attention 40.88 � 10.38 

Executive functions 14.22 � 3.97 
the volumes of GM, white matter and cerebrospinal fluid, as
estimated by the MATLAB get totals script implemented for SPM
(http://www.cs.ucl.ac.uk/staff/g.ridgway/vbm/get totals.m). Sta-
tistical threshold was P < 0.05 corrected for multiple comparisons
with whole-brain family-wise error (FWE) correction.

Using the Wake Forest PickAtlas software (Wake Forest
University, USA; www.fmri.wfubmc.edu), statistical maps were
limited to priori regions of interest (ROIs). The mask included
inferior, middle, medial and superior frontal gyrus.

3. Results

Observed genotype frequencies were as follows: T/T 19/50
(38%), T/G 18/50 (36%) and G/G 13/50 (13%). Allelic frequencies (T
56% and C 42%) were slightly different from those observed in
normal subjects [30]. The sample was in Hardy–Weinberg
equilibrium (x2 = 3.63; df = 1; P = 0.056). Clinical and demo-
graphic characteristics of the sample are presented in Tables 1
and 2; no difference among genotypic groups reached significance
(Table 2) and only performance in executive functions was
significantly different between good performers and poor perfor-
mers (Table 1). Both total intracranial volume and brain volumes of
GM, white matter and cerebrospinal fluid did not significantly
differ among genotype groups (Table 2) nor in relation to
performance (Table 1).

The analysis of variance showed a significant effect of genotype
on working memory performance (G carrier 9.74 � 5.57; T/T
6.73 � 3.75; F = 4.45, P = 0.040) with G carriers showing worse
performance compared to T/T subjects (b = 0.31; t = 2.11; P = 0.040).
No significant effect medication load (F = 0.19, P = 0.067), duration of
illness (F = 0.30, P = 0.58) and mean cognitive performance (F = 1.62,
P = 0.21) was found.

At the VBM analysis, the combined effects of genotype and
working memory performance (conjunction analysis) survived the
statistical threshold in two main clusters in Broadmann Area 9, one
of 98 mm3 in left middle frontal gyrus (at MNI coordinates –38 8
36; F = 17.87, Z = 5.5, p-FWE = 0.001) and one of 43 mm3 in right
inferior frontal gyrus (at MNI coordinates 39 24 38 F = 15.29,
Z = 5.15, p-FWE = 0.005) (Fig. 1).
ing to working memory performance. Medication load refers to chloropromazine

Bad performers n = 22

(T/T = 10; T/C = 6; C/C = 6)

Mean � SD T/P

36.59 � 8.13 –0.75/0.45

25.64 � 5.96 –0.87/0.38

12.05 � 2.98 –0.01/0.99

10.95 � 5.87 –0.11/0.91

302.84 � 186.84 0.18/0.85

79.95 � 7.33 1.88/0.07

4.04 � 2.66 0.16/0.87

1510.99 � 176.54 0.51/0.61

646.46 � 84.36 0.33/0.74

515.65 � 75.31 1.51/0.13

348.88 � 62.36 –0.68/0.5

15.76 � 3.39 0.96/0.34

20.86 � 4.42 –0.84/0.40

36.71 � 6.84 –0.07/0.94

73.33 � 12.26 0.10/0.92

46.33 � 14.37 –0.23/0.82

16.23 � 3.90 0.54/0.59

65.5 � 17.76 0.32/0.75

34.63 � 12.96 0.94/0.35

37.27 � 11.07 1.17/0.24

12 � 3.61 2.03/0.048

http://www.cs.ucl.ac.uk/staff/g.ridgway/vbm/get%20totals.m
http://www.fmri.wfubmc.edu/


Fig. 1. Localization of grey matter areas where rs4354668 and working memory performance influenced grey matter volume at a statistical threshold of whole-brain P = 0.05

FWE corrected.

Table 2
Clinical and demographic characteristics of the sample as a whole and divided according to rs4354668 genotype. Medication load refers to chloropromazine equivalent

dosages.

Total sample GG (n = 13) EAAT2

GT (n = 18) TT (n = 19)

Mean � SD Mean � SD Mean � SD Mean � SD F/P

Age 35.56 � 8.76 35.15 � 8.91 34.89 � 8.06 36.47 � 9.65 0.16/0.85

Onset (years) 24.62 � 6.60 25.54 � 5.17 25.61 � 7.43 23.05 � 6.67 0.86/0.43

Education (years) 11.96 � 2.97 11.61 � 3.47 12.33 � 2.22 11.84 � 3.34 0.23/0.79

Duration of illness (years) 10.82 � 7.58 9.61 � 7.18 8.82 � 5.88 13.42 � 8.73 1.94/0.15

Medication 314.41 � 197.54 335.57 � 211.51 309.72 � 186.12 304.36 � 207.93 0.10/0.90

IQ 82.17 � 7.38 81.7 � 5.91 81.28 � 8.17 83.33 � 7.53 0.36/0.69

No hospitalizations 4.1 � 3.68 3.61 � 2.81 4.17 � 4.42 4.37 � 3.59 0.16/0.85

% 0-back 89.92 � 20.45 91.38 � 8.46 89.77 � 23.93 89.05 � 23.39 0.05/0.95

% 1-back 51.44 � 27.83 44.31 � 29.55 47.11 � 27.83 60.42 � 25.57 1.68/0.19

% 2-back 31.59 � 18.9 24.31 � 17.73 28.94 � 15.33 38.94 � 22.30 2.76/0.07

Total intracranial volume (ml) 1523.83 � 183.1 1573.62 � 182.59 1525.94 � 159.81 1487.76 � 204.27 0.84/0.43

Gray matter (ml) 649.55 � 94.48 670.65 � 96.14 655.19 � 96.82 629.75 � 92.29 0.76/0.47

White matter (ml) 532.99 � 71.84 549.67 � 80.35 538.39 � 58.3 516.46 � 77.57 0.9/0.41

Cerebrospinal fluid (ml) 341.29 � 65 353.3 � 51.29 332.35 � 63.26 341.54 � 76.05 0.38/0.68

PANSS positive 16.58 � 5.26 17.27 � 4.29 17.05 � 7.28 15.64 � 2.91 0.42/0.66

PANNS negative 20.22 � 4.05 21.36 � 3.14 18.94 � 4.66 20.82 � 3.73 1.55/0.22

PANNS general 36.56 � 6.03 38.27 � 7.88 35.44 � 4.78 369.65 � 5.97 0.74 � 0.48

PANNS total 73.53 � 11.71 76.91 � 12.62 73.56 � 9.33 71.44 � 13.13 0.73/0.48

Verbal memory 45.82 � 12.15 47.75 � 15.31 46.95 � 12.88 43.33 � 8.88 0.6/0.55

Working memory 16.64 � 4.14 17.69 � 3.86 15.95 � 5.17 16.61 � 3.05 0.67/0.51

Psychomotor coordination 66.22 � 16.58 69.23 � 13.92 62.79 � 19.96 67.66 � 14.54 0.68/0.51

Verbal fluency 36.14 � 11.73 34.85 � 11.93 39.31 � 12.19 33.72 � 10.95 1.16/0.32

Selective attention 39.26 � 10.74 38.61 � 10.15 41.42 � 11.37 37.35 � 10.65 0.66/0.52

Executive functions 13.22 � 3.94 13.38 � 4.29 13.79 � 4.25 12.47 � 3.37 0.5/0.6
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Fig. 4. Interaction genotype � performance. Direction and size effect of the

observed difference in left middle frontal gyrus (MNI coordinates –38, 8, 36). Bars

are means, whiskers are standard errors.

Fig. 2. Global effect of genotype. Direction and size effect of the observed difference

in left middle frontal gyrus (MNI coordinates –38, 8, 36). Bars are means, whiskers

are standard errors.
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The analysis of the main effect of the two factors in these
clusters showed that in left middle frontal gyrus (Fig. 2) patients
with T/T polymorphism had increased GM volumes compared to
patients with G/G, with heterozygotes showing an intermediate
pattern (F = 11.51, Z = 3.68 p-FWE = 0.002); and that patients poor
performers had significantly lower volumes than good performers
(t = 4.23, Z = 3.81, p-FWE = 0.001) (Fig. 3). In right inferior frontal
gyrus, the main effect of genotype did not survived correction for
multiple comparison, but patients poor performers had signifi-
cantly lower volumes than good performers (t = 3.91, Z = 3.57, p-
FWE = 0.003).

The effect of genotype was driven by significant differences
between genotype groups among poor performers, while among
good performers genotype had no effect on gray matter volume
(Fig. 4). An ANOVA test confirmed the significance of the
interaction between these two factors (Fig. 2) (MNI coordinates:
–40, 9 37) (Z = 4.70, PFWE = 0.026).
Fig. 3. Global effect of performance. Direction and size effect of the observed

difference in left middle frontal gyrus (MNI coordinates –38, 8, 36). Bars are means,

whiskers are standard errors.
4. Discussion

This is the first study associating a genetic variant of a
polymorphism involved in glutamate clearance, working memory
performance and gray matter volume in schizophrenia patients.
Carriers of the rs4354668 G allele, which is associated with less
transporter expression and a 30% reduction in promoter activity
compared with the T allele, reported lower GM volumes than T/T
homozygotes and worse working memory performance. Poor
working memory performance was associated with GM reduction
(Fig. 1). Interestingly differences between the three genotypes are
definitely more relevant among patients showing poor perfor-
mance at the 2-back task.

Major limitations of this study are the lack of a healthy control
group and a small sample size when stratifying good vs poor
performers in accordance to EAAT2 polymorphism. Other limita-
tions of the present study, which is retrospective, uncontrolled and
correlational in nature, include issues of generalizability, previous
medications, non drug-naı̈ve, no placebo control, no standardized
treatments, population stratification, no evaluation for compli-
ance, varying treatment periods, without consideration of gene-
environment interactions.

The G allele is associated with lower EAAT2 expression which
leads to decreased protein level. This may affect glutamate
recycling at the synaptic cleft and contribute to reported alteration
of glutamatergic function in schizophrenia patients [14]. More-
over, EAATs are also involved in functions other than glutamate
clearance, such as attenuating NMDA receptor function [6], which
has been found to be altered in schizophrenia patients [39]. Since
glutamate is known to be involved in the production of reactive
and excitotoxic oxygen/nitrogen species, which induce oxidative
stress leading to neuronal death, the decrease in cortical thickness
observed in schizophrenia patients could be linked to an excess of
extracellular glutamate.

Our results are consistent with the study of Egan et al. who
previously found lower EAAT2 expression and impaired prefrontal
cognitive functions among subjects carrying the high-risk mGluR3
associated with schizophrenia [12]. Indeed the presence of the G
allele may result in a disruption of the control mechanisms
necessary to maintain extracellular glutamate levels below the
excitotoxic threshold concentration in the prefrontal cortex. The
impaired EAAT2 expression could determine a prefrontal neuronal
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damage with a consequent disadvantageous effect on cognitive
functions. This effect could be especially relevant to working
memory as prodromal studies found WM deficits similar to those
marking affected patients, but of lesser magnitude [19,26,47].

The differential effect of EAAT2 polymorphism observed
between good and poor performers suggests that the effect of
EEAT2 on gray matter might reveal in the presence of a
pathological process affecting gray matter. In analogy with the
observation of worse damage in G carriers after stroke [30] we
found the detrimental effect of G allele in patients who had poor
working memory performance associated with schizophrenia, but
not in patients with preserved neuropsychological performance
thus suggesting a major effect for other variables (environmental
stress, drugs, neurotrophic factors) interacting with glutamate
function.

These observations seem to suggest that the brains of patients
with schizophrenia may be disadvantaged in their ability to
maintain adequate connections between neurons, to effectively
control programmed cell death and cell proliferation, and to adapt
to changes in their environment and defend against various
physiological insults.

Therefore it could be postulated that in poor performers, there
are no resilience factors that could counteract the detrimental
effect of glutamate excitotoxicity.

Recently the glutamate system, thanks to the several possibi-
lities of modulation it offers, has become the target of search trends
for augmentation strategies [24] of antipsychotic treatments. Two
different pharmacological mechanisms are involved: modulation
of receptor activity or glutamate release inhibition. Results on
human subjects are controversial but seem to suggest that
glutamatergic agonists like glycine and D-serine and antagonists
like memantine could improve positive, negative and cognitive
symptoms [10]. In particular, the use of memantine in the early
stages of schizophrenia may block the glutamate excitotoxicity
correlated to high glutamate levels, slowing the progression of
negative symptoms associated to more advanced stages of the
illness [10].

These data seem to further support our results showing
an association between a genetic variant of a polymorphism
involved in glutamate clearance, cognitive performance and gray
matter.

Further research on the interaction between glutamate and
other genetic and environmental factors as well as longitudinal
studies on the long term effects of carrying the rs4354668 G allele
are needed to clarify this issue.

5. Conclusions

Schizophrenia patients have been shown to have decreased
expression and less glycosylation of EAAT2 [36] which might
reflect decreased glutamate reuptake. In our study, we demon-
strated an association between this polymorphism and working
memory in influencing gray matter volume in these patients.
Carriers of the rs4354668 G allele, which is associated with less
transporter expression and a 30% reduction in promoter activity
compared with the T allele, had lower GM volumes than T/T
homozygote and worse working memory performance. Alterations
in glutamate concentration could compromise structural con-
nectivity and integrity, programmed cell death and cell prolifera-
tion, and the ability to adapt to changes in the environment and
defend against various physiological insults.
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